Wood Stoves

Many modern wood-burning stoves are more efficient than heat-circulating fireplaces. Some stoves only radiate heat, while others also heat air passing around the firebox in convention currents. The EPA certifies prefabricated fireplaces and stoves for burning efficiency and allowable particulate emissions. New models that meet EPA requirements are quite clean burning.

A wood stove (Fig. 24-2) may be the only source of heat for a residence or small commercial building. The location of the wood stove has a significant impact on the building design. It is easier to add a freestanding stove than a built-in fireplace, but because a stove must be located at safe distances from combustible surfaces, it occupies a great deal more floor space. Noncombustible materials must be used below and around the wood stove, with a minimum clearance provided to combustible materials. Wood-burning stoves require 46 cm (18 in.) minimum between uninsulated metal chimneys and combustible wall or ceiling surfaces. The stove must be at least 91 cm (36 in.) from the nearest wall. This may be reduced to 46 cm if the wall is protected by a non-combustible heat shield or 25-mm (1-in.) clear air space.

The stove's location affects furniture arrangements i( and circulation paths. Areas that "see" the stove get most of the radiant heat, resulting in hot spots near the stove and cold spots where visual access is blocked. You have to leave circulation paths around hot stove surfaces. Remember also to plan space for wood storage, which

Min. 18" between uninsulated metal chimney and combustible wall or ceiling surfaces

Noncombustible heat shield

Min. 18" hearth of noncombustible brick, slate, stone or metal plate

Outside combustion air intake

Noncombustible heat shield

Min. 18" hearth of noncombustible brick, slate, stone or metal plate

Outside combustion air intake

Figure 24-2 Woodburning stove.

should be covered, well ventilated, accessible, and large enough for an ample supply.

Circulation stoves convert the fire's radiant heat to convected heat in the air. The hot air rises in a layer to the ceiling level. If a path exists at ceiling level between rooms, this heat can spread through a building and to upper floors. Thermally massive ceilings hold heat longer for release overnight.

Catalytic combustors on wood stoves reduce air pollution. Honeycomb-shaped ceramic disks up to 152 mm (6 in.) in diameter and 76 mm (3 in.) thick are inserted into the flue or built into the stove. The disks ignite wood smoke at a lower temperature, burning up gases and producing more heat and less creosote. Wood stoves with catalytic combustors can't burn plastic, colored newsprint, metals, or sulfur. Precision dampers and other controls let you adjust the heat output.

Solar Power

Solar Power

Start Saving On Your Electricity Bills Using The Power of the Sun And Other Natural Resources!

Get My Free Ebook


Post a comment