What An Underground House Is

Tiberian Growdome System

Build Your Own Greenhouse

Get Instant Access

Perhaps we should start with what an underground house is not. An underground house is not dark, damp and dirty. It is not airless and gloomy. It is absolutely not a basement.

An underground house has no more in common with a basement,

Than a penthouse apartment has in common with a hot, dark, dusty attic. A basement is not designed for human habitat. It is a place to put the furnace and store junk. It is constructed to reach below the frost line so that the frost heaves don't crumple the fragile conventional structure above. It is a place where workmen can walk around checking for termites under the flooring, where they may work on pipes and wiring. Its design, function and often even the material from which it is built is different from an underground house. A basement is usually a dark, damp, dirty place and even when it is not, even when it is a recreation room, say, it is usually an airless place with few windows, artificially lighted and having an artificial feel.

An underground house is not this at all.

It's not a cave either.

Chapter 2


We believe that when designed and built properly on suitable sites, Post/Shoring/ Polyethylene, or PSP, underground dwellings are the finest that can be constructed. They have 23 distinct advantages over conventional structures. These are:























(1) On conventional houses, FOUNDATIONS are a considerable percent of the total cost of the house. We eliminate that cost right away. In fact, the cost of pouring a conventional foundation is often what it costs to build an entire underground house.

Foundations serve a number of purposes on surface structures. First of all, obviously, they support the building. Secondly, they reach below the frost line in cold areas to eliminate the threat of frost heaves damaging the structure. Thirdly, a foundation raises the house above the earth so that the flooring is not rotted by moisture. Lastly they make possible a crawl space (where there is no basement) so that the utilities and termites may be worked on without tearing up the floor.

All of this is unnecessary. The PSP method is to utilize pole construction and to sink it below the surface. Pole construction is as sturdy or even sturdier than conventional construction. Pole construction was invented in Japan to deal with earthquakes. With a conventional building you are in real trouble if an earthquake or other disaster crumbles your foundation; the house may likely come down. Pole construction does not crumble, however. Each pole rides out the quake, shifts around as it must, and settles back into place leaving the building comparatively undamaged.

(2) There is LESS BUILDING MATERIAL used in underground construction. The fact is with PSP we use about half the amount of material a conventional structure uses. Except for polyethylene, the only thing we use more of, probably are windows. See page 25 for a comparison of materials.

(3) With less material we use LESS LABOR simply because there is less material to handle. If the house is dug by hand this advantage is somewhat lessened, but it still may involve less labor. By way of example, a friend began construction of an A frame cabin about the same time I began work on the original $50 U house. Both buildings had about the same amount of floor space. Though his was on a site where the materials could be delivered by truck and my materials had to be back packed a quarter of a mile over a 200 foot hill, I finished mine in two months while it took him nearly nine to complete his. And my house was dug by hand. When a U house is dug by machine the labor is reduced to minimum levels.

(4) An underground house is the most AESTHETICALLY PLEASING of all the modes of construction. When completed a U house is nearly invisible. Rather than looking at a ticky tacky box of painted lumber and roofing or a hunk of concrete and steel you see only grass, shrubs and trees. An underground house blends in with the surroundings. It does not compete with or try to dominate the environment.

It comes down to this: which is the most pleasing, what God has created or what man has created? Would you rather look at hunks of concrete, or at aluminum siding, or would you rather look at the natural greenery? A U house blends in with nature while the other is constructed, usually, with a total disregard for the environment. Those few above ground structures which do merge with the surroundings are so unusual as to sometimes become world famous. Frank Lloyd Wright's Falling Water house in Pennsylvania is an example of one such. Yet, a good subsurface structure blends with nature even better than that.

(5) You pay LESS TAX on a U house because it has less resale value (at this time) than do other structures. As their popularity increases this blessing will be wiped out, but for now it is a happy advantage. When the assessor comes around to see your house— assuming he can find it—you can feign great surprise and indignation and wave the as0 sessment in the air and point out that no one in their right mind would pay that much for a hole in the ground!

(6) Our houses are far EASIER TO HEAT in the winter than are conventional buildings. We call this the root cellar effect.

Since one of every twelve B.T.U.'s consumed on earth go to heat or cool an American structure, underground buildings, when they become more common, will have both national and global impact in terms of energy savings. For the individual home owner the root cellar effect means cash in the pocket.

If the average temperature of the earth surrounding an underground house is 50 degrees and the air temperature falls to zero, the man living below must raise his home temperature by only 22 degrees while the man living above ground must raise the home temperature by 72 degrees.

(7) The root cellar effect applies equally to the summer months making the U house far EASIER TO COOL. Not only does one have that 50 degrees of refrigeration to draw upon but there is the transpiration of the grass and other vegetation on the roof to add an additional cooling factor. Lots of windows opened at night can keep the air circulating pleasantly and keep the humidity factor— admittedly sometimes a problem in U houses —to a minimum.

(8) Underground houses can actually offer a BETTER VIEW than above ground dwellings. This is such a mind boggling concept, so alien to normal concepts, that we will go into this in detail in the chapter on design.

(9) BUILT-IN GREENHOUSES are a feature which is superbly applicable to U housing. Even the federal government has recognized the wisdom of attaching greenhouses to dwellings for both food production and solar heating—it has been making funding available for experimentation in this direction.

On all housing both above and below surface attached greenhouses not only provide a means of food production and solar heating, but when built around windows they help to keep heat escapage to a minimum, the same way storm windows do. When these greenhouses are built below the surface as with U

housing and as with the old-fashioned farmer's grow hole, they also have the benefit of drawing on geothermal energy.

(10) U housing is unquestionably the most ECOLOGICALLY SOUND form of building presently developed. The use of less building material means less disruption of the environment, especially since most of those materials are of a renewable source (lumber). The use of less energy to heat and cool these structures is, certainly, a big eco plus. And then there is the fact that U houses take up none of the earth's growing surface. About this, conservationist-architect Malcolm B. Wells says:

"We the people of the United States of America, and all other animals upon this continent, spend our lives in utter dependence upon living green plants. They alone give us our food. They alone renew and refresh the air. They alone heal man's earth wounds . . . They alone store sunlight for our use.

"But few of us realize all this.

"We forget that green plants must have ground space in order to live and grow, so we cover the life-giving land with buildings and roads at ever-faster rates, often in low-lying areas where the soil is richest. And that's not all. The buildings we're building today waste massive amounts of fuel and water, they intensify noise and weather, they're out of step with nature's grand century-by-century pace, and they're crushing the human spirit.

"We don't know the first thing about building.

"Therefore, those of us who pave and build are helping to plunge the nation into disaster. It's as simple as that—today's architects, engineers, builders, pavers, realtors, developers, planners, building officials and code administrators are public enemies— destroyers of life. There's no other way of looking at it in the light of today's knowledge. Our grandchildren are going to curse us for our blindness."

Just one small example of how we are destroying the environment for living green things: Between 1920 and 1950 one third of the farm land in Ohio was eroded away, strip mined, built upon or paved over. Obviously the destruction has continued apace. And that's just one of our fifty states. The result is seen in such effects as the 10 percent increase in carbon dioxide now measurable in the at eismi/

¿cufidtj Alktrie mosphere. Building underground is a small way that an individual can help to counter this trend, but it is an important way. The environment will become healthy again only when each of the 220 million Americans work in small ways to promote that health. If we don't, of course, we will not survive.

(11) Another happy advantage is the INCREASED YARD SPACE one gains by building underground. The roof makes a dandy lawn. If the average house takes up a third to a half of any given plot and that plot costs, say, $10,000 then the home owner gains $3,500 to $5,000 worth of usable yard just because he has built below surface.

(12) The fact that a U house can also be a FALLOUT SHELTER is yet another advantage. A great number of people ranging from a group of prestigious Harvard professors, to those who study the Bible, to the entire Chinese population (who are burrowing like crazy beneath their cities), anticipate a global atomic war before the turn of the century. We won't go into that anymore here other than to point out that with three feet of earth on the roof and the proper design a U house can meet fallout shelter specifications.

(13) Similarly the effects of ATMOSPHERIC RADIATION, steadily increasing with each atomic test and nuclear plant constructed, can be lessened by living underground.

(14) DEFENSE is something few people think of when building a house. This past century, since the Indians have been squashed, there has been little need for defensive homes in the United States.

Yet an awareness of the need for defense has been increasing with the rise in the crime rate. Whole subdivisions are being built now with fortified walls around them and manned gates. One new subdivision in California even has a defensive moat around it. If, as many fear, this fragile industrial society of ours collapses, the need for a defensible home could be paramount. A person might not be sufficiently alarmed to design a structure with defense in mind but it might be reassuring to know that one's house is defensible should that need arise. All underground structures are defensible. Where does the army go when it wishes to defend itself? It goes underground.

(15) CONCEALMENT may in the end turn out to be the best defense from both the pillaging bands of people which would be the inevitable result of a collapse of this society, and from the harassment of building inspectors and other government criminals which is the inevitable result of a continuation of this society. If they can't find you they can't attack or harass you. And there just is no more concealable structure than one which is below surface. Entire armies were hidden underground in Viet Nam and the most sophisticated electronic gadgetry in the world failed to ferret them out. If so, a man could certainly hide his family underground. More on this in the section on building codes.

(16) You're CLOSER TO A SOURCE OF WATER in an underground house. This is an advantage which might not appeal to a person with lots of money, but to the homesteader who digs his own well, or who pays to have it dug, it is a happy advantage indeed. By sinking your well inside your perhaps 10 foot deep house, you have a 10 foot savings. If the well is professionally driven this means, in our section of the country, a savings of $200, or four times the cost of the original $50 house. If it is dug by hand, it means a savings of up to a week of grunting and groaning. If you sink a ten foot house ard the water table is twenty feet down, you are half-way there. Of course, you will want to be pretty sure that the water table is down at some depth before beginning the house. If you sink a ten foot house where the water table is six feet deep, you will wind up with a four foot swimming pool.

(17) A U house is RELATIVELY FIRE-PRDOF. Certainly the sod roof is never going to catch fire from stovepipe sparks as do the shaked or asphalted roofs of many conventional houses. An earthen floor is not going to burn. Even the walls, though built of wood, are fire resistant since they are solidly backed with earth. Air can reach only one surface. The walls of frame houses have at least four surfaces exposed to air. Furthermore, the material can burn in tandem; when the interior paneling catches fire it ignites the building paper which ignites the exterior sheeting. Each of these materials helps to raise the kindling temperature of the other material further up the line until soon you have a conflagration all but impossible to stop especially out in the country where fire protection is inadequate or nonexistent.

VWiM nti^C

Heavy wooden beams are reported to do better in a hot fire than do steel girders. They tell the story of a fire in a structure near Chicago which was partially built with wooden beams in the old section and steel girders in the newer part. When a fire gutted the building the steel beams melted and collapsed. The wooden beams burned only about an inch deep. They formed a layer of charcoal on the outside which blocked the oxygen. They were still standing after the fire.

(18) Your PIPES WILL NEVER FREEZE in a Hobbit House. They are safely buried in warm earth beneath your floor. Above ground structures with crawl spaces are highly conducive to frozen plumbing as just about everyone who has ever lived in cold country has learned with sorrow. The wind and cold whistles into those crawl spaces and the pipes have to be wrapped with insulation or heating elements, the toilets adjusted so that they keep running slowly, and so forth. Even so, the pipes sometimes freeze anyway. Houses with full basements run less risk but are still not immune. Huckleberry Duckleber-ry Farm, a former North Idaho commune, lost water in the main house for four months in the winter'of 1972. Pipes didn't thaw till April. This despite a full basement with a wood furnace.

(19) Which brings us to one of the least recognized benefits: SUPERIOR FLOORING. There is no finer flooring than a carpet on earth. The floor stays warm all winter. It doesn't rot, get termite infested, make noise when walked upon, or ignite like wooden flooring. When tromped upon day after day it doesn't cause varicose veins, fallen arches, leg cramps or any of the other ailments associated with constant walking on concrete floors. Your feet were designed to walk on earth. This is one of those things which is so obvious that few people can see it.

A layer of polyethylene between the carpet and earth will keep both the moisture and dirt from working up through the rug. If anything should go wrong with the pipes beneath the floor you don't have to call in a jackhammer man like the person with the concrete floor does, or crawl around on your back in a two foot high space like those with wooden floors and crawl spaces must. In-

hamsnma iAiAi7c€f xA

h/y&f ttt tkt* memffUj md eypeAignoL cfo nu{


stead, when there is a problem, or when you wish to add to the plumbing or run another electrical conduit, you simply roll back the carpet and polyethylene, grab your shovel and have at it.

(20) These houses are so simple they CAN BE BUILT BY ANYONE. The only place where there is any heavy effort is in working with the posts and beams. Someone can usually be found to help there, as they can with the windows and utilities. The rest of the job is simplicity itself. Nothing is easier to frame than a shed roof. The floor is little more complicated than leveling earth and rolling out carpet. Siding-off the building is as simple as stacking lumber and shoveling earth.

(21) A U house is as WEATHERPROOF as a structure with external windows can possibly be. Where do folks go in the midwest when a tornado approaches? They go underground into tornado shelters. Trailer houses and similar mistakes are usually totally destroyed when a tornado or hurricane hits. Even if a full sized tree should fall on a U house the survival chances are excellent for there are banks of solid earth on all sides to absorb the weight. If a tree falls on most conventional structures devastation is the result. It makes a man shudder to even think of what happens when a tree hits a trailer.

(22) There is LESS MAINTENANCE needed on a U house. As mentioned the floor is virtually maintenance free. So is the exterior. You should never need to re-roof the place, nor will you ever need to paint the outer walls. Exterior maintenance is so simple, in fact, that mowing your roof could be your biggest problem.

(23) The final great advantage is that a U house is relatively SOUNDPROOF. Obviously, no noise is going to sneak in through the floor or through those solid earth walls and darn little is likely to make it through eighteen inches of earthen roof. That leaves the windows and doors as sound conductors. Even here we have the advantage of having most windows facing out onto sunken courtyards which in themselves are sound sheltered areas and as little sound enters, little sound escapes: you are far less likely to disturb your neighbor even if you make outrageous noise.

Chapter 3



mmmwmTrnWWr )

I built the original $50 underground house n the spring of 1971 with help from a friend, a man named Lynn Moore. From the begin-ring the house was different from any other both in design and materials.

A winter spent brooding over design had led me to reject what I've come to call the First-Thought House. This is an underground built into a hillside with windows rearing above surface to give a view down hill. For months it was the only design I could imagine though I was troubled by predictable drainage problems, by the fact that there could be entrances only on one side of the house, and because I couldn't figure out how to get cross ventilation and a balance of light.

In the end, we did a radical thing. We built so that the contour of the roof was the same as the pitch of the hill. This solved much of our drainage problem for all precipitation landing on the roof ran off away from the house. The windows, rather than facing down hill, faced up. At first these were to be basement type windows, but that didn't seem right. If we were to have windows there why not full sized ones? Then it seemed only logical to stack windows one on top of the other making nearly a solid wall of glass from waist-high to the eight foot ceiling. What could have been a gloomy back wall became light and airy.

There wasn't much of a view out there. We began excavating on the outside and put in an uphill sunken patio. We planted trees and landscaped it somewhat and it looked nice. We put in a door there, too, since the excavation was already completed outside.

One afternoon well before the house was completed I was sitting on the floor feeling mellow, laid-back, you might say. A cloud apparently cleared the sun for all of a sudden a shaft of sunlight came in through an uncompleted section of the west wall near the roof. My head snapped up like a retriever getting a scent. I knew instantly that I just had to have a window there to catch the evening sun. Shouting, "Yeah, yeah, oh yeah!" or something to that effect, I ran outside and grabbed a shovel. Twelve hours later I had a window in and shoring on the excavation outside. That was the fire window.

We built the structural part of the house out of cedar and tamarack logs I'd felled a year before when my plans were for a log cabin. For paneling we used two-foot long millends—lumber that was slightly defective and trimmed off by the planer at the local saw mill. The mill threw these away. They were free for the taking. The idea to use polyethylene on the roof came from Hew Williams, founder of Tolstoy Farm over near Davenport, Washington. Hew had a six sided log cabin with a three-foot sod roof which unfortunately leaked mud during rains. He shoveled off the roof, laid a layer of polyethylene down, four inches of dirt, another layer of polyethylene and the full complement of dirt and sod on top of that. I've never seen any reason to change his formula except to use less earth and pitch the roof. Hew was also the first to show me the benefits of an earth/ carpet floor.

The idea to use polyethylene around the rest of the house came from Lynn Moore.


tyi&XUie ivh\tc mam.

d&tfiS rtfrC imd£%{amd awi Lucufh.

One day he said, "Why don't we use it outside the walls? It'll keep the wood from rotting." And that was the beginning of the Post/Shoring/Polyethylene system.

Total cost of materials for the house was just under $50 including stove and a lamp. It would be higher by today's prices. When I bought my last'air fight stove, for example, it was $35, not $22, without pipes and damper. If you can't scrounge free lumber, salvage it, or mill it from trees on your own land with a chain saw and an Alaskan Mill, the house could run in the hundreds. But if you can get the lumber, and if you can weld together your own stove from perhaps an old thirty-gallon oil drum, it is still possible to build a house like this for under $50. Here's the breakdown on the original one:

Beams & Posts Free

Millends (lumber) Free

Polyethylene $15.00

Flooring Free

Insulation Free

Chairs Free

Door Free

Cooler Free

Stove, Stove Pipes & Damper ... .$22.00 Windows $ 4.00

TOTAL $49.70

The cooler and door were given to me by a neighbor who was tearing down an old cabin. The nails were bought at a local junk sale. They were used so I had to straighten them one at a time. The windows were also used. In those days before the rush of back-to-the-landers I was able to buy them for 250 and 500 each. The lamp was a kerosene model bought at a local hardware store. I needed a single quart of paint because I used it only around the windows, preferring to keep the beams and paneling natural. The chairs and tables were made out of logs and millends, the only cost there being oilcloth table covering, that turn of the century kitchen favorite which not only looks pretty, but which can be cleaned with a damp rag. The insulation was Mother Earth herself, some thousands of miles thick and absolutely free.

The flooring presented a problem which was solved by 14 year old Mary Ann, daughter of John and Mary Van Etten, close neighbors and friends. I was complaining about my dirt floor 'cause it raised dust and was no fun to sit on. I wasn't about to do a wooden floor for various reasons and she suggested I try straw. Since her father wanted to clear the old straw out of their barn for the new hay cutting, he gave me a number of bales for free. It made great flooring. It reflected light and made the place cheery. It smelled nice. It was fun to sit or lie on. If I spilled anything, I just scooped up the floor and threw it into the stove. The only disadvantages were a slight fire hazard and the fact that if you lost anything small, it was gone.

I lived in the house for four years. I only spent one winter there, mainly to field test it. The other three were spent out on the lecture circuit where it was possible to avoid "cabin fever," that dreaded winter plague of the North. One hundred and twenty square feet is not much living space, but due to economy of design things worked out nicely.

The front wall of the house, the one with thirteen windows facing the Uphill Patio, was eight feet high. This gave a guy room to walk around. Cooking was done in this area,

Left: Mike begins work on the lower wall of the $50 house.

Above: Mike stands in the doorway of the $50 underground house. Doorway leads out to Uphill Patio.

Below: View down through Uphill Patio and looking through wall of 13 windows into the house at dusk.

Above: Mike stands in the doorway of the $50 underground house. Doorway leads out to Uphill Patio.

Below: View down through Uphill Patio and looking through wall of 13 windows into the house at dusk.

either standing around the stove or leaning out the barbecue windows (these, the fire-window, the PSP system and other features are all explained in later chapters). The other section of the house, where the ceiling came as low as three and one half feet, was for sitting and lying down activities. It was for writing, reading, playing the guitar, sleeping and other recreations.

When I first built the place I put three feet of earth on the roof. This was both to provide good growing conditions for vegetation and to meet government specifications for a fallout shelter. One morning, however, after several days of heavy rains, Willie Howitt, a hitchhiker who has spent many weeks helping me, and who was crashing there at the time, asked, "Did you hear that horrendous creak last night? It sounded like the whole house moved." Alarmed, I made a hasty inspection and discovered that it had moved. It had shifted down hill an inch or more throwing the plumb off the frame for the fire-window. I grabbed a shovel and went outside and took eighteen inches off the roof. Though the design was sound, my engineering was faulty for reasons we will examine in the chapter on construction.

The same poor engineering was responsible for another disaster; the east wall of the house began to push in. Though the north wall was uphill, the east wall was up-ravine and that ravine was exerting pressure no other wall of the house was subjected to. This left three choices: abandoning the house, repairing the damage, or adding another section to the east and using proper engineering. We chose the latter.

In the summer of 1975 we began work on what I've come to think of as a second house altogether, so radically did it change the function and appearance of the original $50 structure. We call it the $500 house.

Christopher Royer came out from Indiana to help. A bright, likeable architecture student, he wanted some first hand experience at underground construction. He got it— with a shovel in his hand. We began by punching through a new

Wall begins pushing in due to poor engineering. Post at right (bark on) is an emergency support.

trail to the county road which corners my property nearly a half trail-mile away from the building site. Lynn Moore and I had back packed the millends over the 200 foot ridge which divides my property, but we needed a new system. A neighbor had given me some old 2x12 inch lumber up to eighteen feet long which he had salvaged by tearing down an abandoned saw mill. He wanted to get rid of the lumber to spruce up the property he was trying to sell. Did I want it? You bet I did. We skidded it by horse up the new trail.

After three weeks of hard digging we were ready to begin work on the structure itself. We set treated lodgepole pine posts in the ground and built the roofing beams and girders from tamarack, all of which was logged close to the site. When Chris finally left to go back east we had rebuilt some of the old house, had replaced a girder without disturbing the roof above, and had completed most of the structural work on the new section. 4 I worked on the house all that fall, winter and into the spring. The finished product was worth it. It has 370 square feet, is built on three levels, and includes a root cellar, 42 windows, white painted walls set off by stained and varnished posts and beams, and wall-to-wall carpeting (which alone was two-fifths the cost of the house).

Entrance to the house is now through a door in the "Royer Foyer." It is an excavation in the hillside. You enter from floor level terraces constructed on the downhill slope with the earth from the house excavation. There are no more stairs to climb up or down. Because of this and because there are so many windows, the most common reaction of bemused first-time visitors is, "But I thought the house was supposed to be underground!" It is. It's completely beneath the surface of the earth. "But I thought ..." and here their voices trail off. "But you thought it was dark and windowless, like a cave, huh?"

Ha. The underground designer's moment of glory.

Seige-by-bear was common at the original $50 underground house when, during the early 1970's different bears respectively broke in through the firewindow, the barbecue windows, and the cooler. They, or others, also tore up a tent, tossed bedrolls around and hit a number of caches.

The author shot bears in 1972 and again in 1974—the first as the author stood on the roof, the second as the bear stood on the roof. That dissuaded them for years, so author was surprised on July 2, 1978 to see, entering the Uphill Patio, a bear displaying every intention of busting into house. Yells did not discourage him. A shot from an 8mm Mauser did.

"A ticklish moment," the author says. "They tend to run down hill when hit and this one was above me. I was ready to dive head first out the window, or to dash out the door in case he leaped, stumbled or rolled through the windows and down into the study. A wounded bear on your head is not a matter for levity."

Instead, the animal charged down through the patio, fell, got up prepared to charge again, and received a second shot through the spinal column which killed him several feet outside the window from which the author had been firing (shown closed in above photo). Terraces made it a simple one man operation to hang bear from extended roof girder in the patio barbecue area for gutting as shown at right (photo, Jim Hubbell).

With weeds knee high in garden, with hog pens needing building, with horse pasture fencing down, with a T.V. film crew due up in 48 hours to shoot house, author was now confronted with dead bear in patio hanging in heat which could soon spoil meat. Holding religious beliefs that one should use all of which one kills, author phoned local taxidermist to get help tanning hide, was persuaded to call game warden to get legal rights to animal killed out of season. Notified, game warden immediately confiscated bear, but promised meat would go to retirement home, hide would be salvaged. Game warden promptly buried bear—meat, hide, claws, all—for reasons author finds totally unacceptable.

Author did manage to hide heart and liver, both of which he promptly devoured. Since you-are-what-you-eat, author now— absurdly—claims he is a 175 lb. bear liver.

Above: Frances, an English hitchhiker friend who came for dinner, enjoys an early fire in the firewindow. Upper Right: Leaning through the barbecue windows, Mike lays birchbark tinder for a fire. Right: Study and bed area of the $50 house.

Wall of windows in the $50 Underground House face Uphill Patio. Barbecue windows stand open, ready for use.

Mike at typewriter.

WWilk(i6wwriäRWYfiTiAofrtciß1§iri|taigwiiy' Bummer 1 wears 22

Frances reads by firewindow.

Was this article helpful?

0 0
Oplan Termites

Oplan Termites

You Might Start Missing Your Termites After Kickin'em Out. After All, They Have Been Your Roommates For Quite A While. Enraged With How The Termites Have Eaten Up Your Antique Furniture? Can't Wait To Have Them Exterminated Completely From The Face Of The Earth? Fret Not. We Will Tell You How To Get Rid Of Them From Your House At Least. If Not From The Face The Earth.

Get My Free Ebook


  • romeo
    Did indians have underground housing?
    8 months ago
  • tommy
    Is underground houses economic?
    3 months ago

Post a comment